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Compensatory and Noncompensatory Multidimensionality 1

Detecting Compensatory and Noncompensatory Multidimensionality Using

DIMTEST

A fundamental assumption of most commonly used item response theory (IRT) models is

that the test in question measures a single ability. This assumption must be evaluated before any

application of unidimensional IRT models because violating this assumption could seriously bias

item and ability parameter estimation (Ansley & Forsyth, 1985; Way, Ansley, & Forsyth, 1988).

Therefore, it is crutial to verify this assumption prior to the use of unidimensional IRT models.

Among a variety of methods proposed to assess unidimensionality, DIMTEST (Stout,

1987, 1990) is a relatively new yet very promising statistical procedure that has attracted

considerable attention in recent years. It was first developed by Stout (1987) and was further

improved by Nandakumar and Stout (1993). This procedure is based on the conceptualization of

essential dimensionality, which proposes to count only the dominant dimensions with minor

dimensions ignored. This conceptualization depends on the replacement of local independence by

the weaker notion of essential independence, and provides justification for the use of

unidimensional IRT models subsequent to a statistical verification that essential unidimensionality

holds for a set of item responses.

In order to apply DIMTEST, the N items of a test are split into three subtests: assessment

subtests ATland AT2, and partioning subtest PT. AT1 contains M items that can be selected either

through factor analysis or expert opinion. These items presumably measure the same dominant

ability and are dimensionally distinct from the rest of items. Another subset of M items are selected

so that they have same item difficulty distribution as AT1 items. These items form AT2 and are

used to offset the statistical bias in AT1 items arising from short test length and/or extreme

difficulty levels. The remaining (N-2M) items form PT which is used to partition examinees into

subgroups based on their total score on these items. The DIMTEST statistic T is computed for AT1

and AT2 subtests based on the within subgroup differences between the usual variance estimate

and the unidimensional variance estimate. This statistic has been proven to be asymptotically
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Compensatory and Noncompensatory Multidimensionality 2

normally distributed with mean zero and variance one when essential unidiemnsionality holds

(Stout, 1987).

DIMTEST has many advantages such as its nonparametric nature, asymptotic theory basis,

and computational efficiency. Its performance has been evaluated by many studies based on

simulated and real data. Generally the results indicate that DIMTEST is able to correctly confirm

unidimensionality for unidimensional datasets and effectively detect multidimensionality for two-

or three-dimensional datasets-(Nandakumar, 1993; Nandakumar & Stout, 1993; Stout, 1987). The

accuracy of DIMTEST has been found to depend on both sample size and test length, with T

performing best on tests with more than 25 items and with sample sizes greater than 500 (de

Champlain & Gessaroli, 1991). Nandakumar & Stout (1993) also found that DIMTEST

performed poorly when a test contained highly discriminating items with guessing present.

Therefore they revised this procedure to overcome this limitation and automate the determination of

M, the size of the assessment subtests. The improved DIMTEST, with statistic T', has been shown

in simulation studies to adhere more closely to the nominal level of significance for unidimensional

tests and achieve greater power for multidimensional tests (Nandakumar & Stout, 1993).

When simulated data are used to assess the sensitivity of DIMTEST to multidimensional

data, one needs to choose a multidimenisonal IRT model as a basis for data generation. Does the

choice of model impact the performance of DIMTEST? In other words, does DIMTEST

distinguish multiple dimensions equally well with data generated from different multidimensional

models? This is the major question that has driven the present study.

Among the multidimensional models that have been proposed, a major difference rests on

whether compensation occurs among the abilities required to answer the items correctly. Both

compensatory and noncompensatory models have been proposed. Sympson (1978) proposed a

multidimensional extension of the unidimensional three-parameter logistic model thatcan be

classified as noncompensatory (or partially compensatory). This model can be represented as
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1 c
Pii(ei,,) = + (1)

11,i+ exp[-1.7ajh(eih bfh)]}
h=1

wher eih is the ability parameter for person i for dimension h, ajh is the discrimination parameter

for item] for dimension h, bih is the difficulty parameter for item j for dimension h, and ci is the

guessing parameter for item j.

A compensatory multidimensional extension of the three-parameter logistic model was

represented by Doody-Bogan and Yen (1983) as

1

PijOih = c; + 3 (2)
1+ exp[-1.7I aih(011, bih)]

h=1

where all parameters are defined as in equation (1).

The distinction between the two models can be intuitively seen by comparing the

denominators of Equation (1) and (2). In the noncompensatory model, the denominator is the

product of denominators for each dimension, while in the compensatory model the effects of each

dimension are combined within the exponential term. Therefore the compensatory model permits

high ability on one dimension to compensate for low ability on another dimension in terms of

probability of correct response; whereas in the noncompensatory model high ability on one

dimension cannot offset low ability on another dimension outside of a limited range, since the

maximum probability of correct response based on one dimension is the upper bound for the

probability based on the two dimensions.

In addition to model selection, another issue concerning simulating multidimensional data is

the specification of a latent structure underlying test items. Based on a simple structure pattern,

items of a test can be partitioned into clusters that are each influenced by a single ability. With a

less-clear-cut latent structure, a test may contain some "mixed" items that are influenced by more

than one dimension. In a more extreme situation, each item in a test can be influenced by the same

multiple dimensions.

5



Compensatory and Noncompensatory Multidimensionality 4

As outlined above, specifmg model and latent structure are the two major issues to be

considered when simulating multidimensional data. Data can be simulated in different ways

depending on how choices are made on these two issues. A review of literature suggests that

simulation studies for DIMTEST have almost uniformly used a compensatory model coupled with

a simple structure to generate data. That the compensatory model has always been the choice is

largely due to the fact that there is no estimation procedure currently available for the

noncompensatory model; therefore, no parameter estimates from real datacan be used for data

simulation. This presents the question of how to make the simulated data realistic if a

noncompensatory model is to be used for data generation. It has been argued that the

noncompensatory view of dimensionality is more reasonable when a multidimensional test is

considered to be one that requires the simultaneous application of two or more abilities (Ansley &

Forsyth, 1985; Sympson, 1978). If this is the case, how well DIMTEST can distinguish multiple

dimensions when data arise from a noncompensatory model needs to be studied, and the results

compared to those from compensatory cases. For this kind of study, however, it is very important

to ensure that the simulated data represent real test data as well as possible.

With respect to the specification of latent structure, a general approach shared by the

previous studies is that, a test was taken to consist of a subset of items dependent on 81 alone,

another subset of items dependent on 02 alone, and sometimes, a third subset of items dependent

on both 0 and 02. However, such a simple structure type of pattern may not represent what one

might typically encounter in real testing situations. With real data it is sometimes the case that all of

items in a test are simultaneously influenced by the same multiple abilities. For example, a general

reading ability may influence all of items in a math-problem solving test. As another example, a test

anxiety factor may also influence all the items in a test instead of just a few. It seems necessary to

simulate data to reflect this type of situation when investigating how well DIMTEST can detect

multidimensionality.

In recognition of the importance of this type of latent structure, Nandakumar (1991)

conducted a simulation study which included two cases of multidimensional structures. In one case
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several minor abilities existed with each influencing only a small group of items, while in the other

case one minor ability existed which influenced all items in the test. In both cases a compensatory

model was used for data simulation. The mean and standard deviation of item discrimination

parameters for the minor ability were considered to reflect the influence of the minor ability relative

to the major ability. A rough index 13 was further proposed to assess the deviation from essential

unidimensionality due to the joint variation of al and a2, with the index defined as the minimum of

the al and a2 variances multiplied by a constant. According to the results from that study,

DIMTEST tended to retain the hypothesis of essential unidimensionality when the minor

dimension(s) had a relatively small influence on item scores, and was more likely to reject the

hypothesis when the influence of minor dimension(s) increased. The rejection rates were also

shown to vary roughly according to 13, with higher rejection rates associated with higher values of

f3. Among simulation studies for DIMTEST, this one is of special interest since it for the first time

simulated data based on a new type of latent structure. However, this study only simulated cases

with uncorrelated abilities and uncorrelated item parameters, which limits the extent to which the

results can be generated to other conditions.

Another study by Hattie et. al is also noteworthy since it was the initial attempt to examine

the performance of DIMTEST using data simulated from a noncompensatory model (Hattie,

Krakowski, Rogers, & Swaminathan, 1996). In that study, data were generated using a program

called DIMENSION based on a simple structure pattern. The effectiveness of DIMTEST for

identifying compensatory and noncompensatory multidimensionality was examined along with

some other issues. As a result, DIMTEST was found to be sensitive to whether the

multidimensional data arose from a compensatory or a noncompensatory model. Specifically, for

data from a compensatory model, the null hypothesis of essential unidimensionality was

appropriately rejected most of the time, whereas for data from a noncompensatory model, the null

hypothesis was rejected far less than expected under most conditions. Their conclusion was that

DIMTEST is only applicable for identifying compensatory multidimensional data. However, this

study has a major limitation in that it did not address the issue of realism forany of the simulated

7
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data sets, and the way the data were simulated may have been problematic, especially in the

noncompensatory case. The concern is centered at the two difficulty ranges, [-2 , -1, 0, 1, 2] and

[-1, -.5, 0, .5, 1], that were used for data simulation. As hag been pointed out (Ansley & Forsyth,

1985), in the data generation procedure using a noncompensatory model, the difficulty (b) values

play a major role in determining the realism of the data sets. It has been shown that data sets

simulated from a noncompensatory model with b vectors centered at zero resulted in test data

indicative of an uncharacteristically difficult test. Therefore the b values need to be scaled to have

lower means to avoid such a problem.

None of the studies in the literature has examined the performance of DIMTEST for data

simulated based on a noncompensatory model with a latent struture in which all items load on the

same dimensions. This represents a situation where all the items of a test are influenced by the

same abilities and all abilities are required simuataneously to answer each item correctly. Referring

back to the example of math-problem solving test, the reading ability is considered to influence all

the items in the test; in addition, the two abilities may not be compensatory. For an examinee very

low on the major ability (math-problem solving), no degree of competence on the minor ability

(reading) may be able to compensate for this deficiency and lead to high probability of correct

response. This situation may be of much practical relevance and should be considered in simulation

studies.

The purpose of this study, therefore, was to examine the power of DIMTEST for detecting

multidimensionality with data simulated using both compensatory andnoncompensatory models

based on a latent structure in which each item is simultaneously influenced by the same two

abilities. Different simulation cases were considered which varied in terms of relative potency of

the second dimension, in order to gain knowledge of certain performance characteristics of

DIMTEST under these conditions. The performance of DIMTEST for identifying

multidimensionality was assessed and compared across the two models. The effects of test length,

sample size, interability correlation, and guessing on the power of DIMTEST were also examined.
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Method

Monte Carlo simulations were conducted for each simulation case which varied in terms of

the distribution of item discrimination parameters. For the noncompensatory model, the item

difficulty parameters determine, to a large extent, the realism of the generated datasets, therefore

the item difficulty parameters were not altered across simulation cases. The relative dominance of

the second dimension was manipulated by means of changing the distribution characteristics

(mean, SD) of the item discrimination parameters.

Simulation Case 1

The distribution characteristics for the a and b vectors were adopted from the Way et. al

(1988) study. Specifically, for the noncompensatory model, the al values had a mean of 1.23 and

a SD of 0.34, while the a2 values were centered at 0.49 with a SD of 0.11. The two a vectors had

a correlation of -0.29. The b1 values had a mean of -0.33 and a SD of 0.82, while the mean and

SD for b2 values were -1.03 and .82. The correlation between the b vectors was .38. The c value

was set at .2 for all items. The item parameters for the compensatory model were obtained by

adding the following constants to the corresponding item parameters for the noncompensatory

model: -.20 to each al value, .63 to each b1 value, and 1.0 to each b2 value. The a2 values and c

values were unchanged. The rationale for the selected parameter distributions can be found in the

two previous studies (Ansley & Forsyth, 1985; Way, Ansley, & Forsyth, 1988). These sets of

item parameters have also been shown in these studies to yield item responses that closely

resembled actual test data in terms of descriptive statistics, reliability, and difficulty indices; 'and the

number-correct score distributions resulting from the two models were reasonably similar.

To generate binary item responses, the al and a2 values and the bl and b2 values were each

generated from a bivariate normal distribution with the corresponding means and SDs specified

above. Examinee abilities were generated from a bivariate normal distribution with bothmeans zero

9
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and both variances one and with a certain level of interability correlation (.3 or .7). For each

simulated examinee, the probability of correctly answering each item was computed using either of

the two models with the corresponding item parameters and the generated ability for the examinee.

If a uniform random deviate in the interval (0, 1) was less than or equal to the computed

probability, the examinee was considered to have answered the item correctly and was given a

score of 1; otherwise a score of 0 was given.

The design of the study used three sample sizes (500, 1000, 2000). Each dataset was

partitioned into two groups. One group (of size 200, 300, 500) was used for factor analysis to

select the DIMTEST AT1 items, and the other group (of size 300, 700, 1500) was used to compute

the statistic T.

In addition, three test lengths (20, 40, 50), two levels of interability correlation (.3, .7),

and two choices of model (compensatory, noncompensatory) were used. All factors were

completely crossed, resulting in a total of 3 combinations. Each combination was replicated 100

times for a total of 3600 datasets, with new examinee responses being simulated each time.

DIMTEST was applied to each dataset. For all DIMTEST runs, the default method of factor

analysis was used for selecting AT1 items, and the Wilcoxon rank sum test (with a nominal level

of .05) was called for a difficulty check for the selected AT1 items. The number of rejections over

100 replications was noted.

Simulation Case 2

In this case the mean of a2 values was increased from .49 to 1.23. Thus the distributions of

al and a2 values had the same mean of 1.23 and different SDs with SDal=0.34 and SDa2=0.11.

The purpose for doing this was to explore the sensitivity of DIMTEST to the increased relative

potency of the second dimension in terms of the magnitude of item discrimination parameters. Data

were simulated with two levels of test length (20, 40), three levels of sample size (500, 1000,

2000), three levels of interability correlation (0, .3, .7), two levels of guessing (0, .2), and two

choices of model (compensatory, noncompensatory). The addition of c=0 and p=0 cases was
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intended to examine the behavior of DIMTEST under more extreme circumstances. Each of the 72

combinations of factors was replicated 100 times, resulting in 7200 datasets, withnew examinee

responses simulated each time. The procedures for generating item responses and for DIMTEST

runs were the same as in Case 1.

Simulation Case 3

In this case the means of al and a2 values remained the same as in case 1, while the SD of

a2 was increased from .11 to .34; thus, the distributions of the al and a2 values had the same SD

of 0.34 and different means with meanai=1.23 and meana2=0.49. This was intended to examine the

performance of DIMTEST in the instances with increased relative potency of the second dimension

in terms of variability of item discrimination parameters. Comparisons could also be made for

rejection rates across the three simulation cases which reflected different distributions of item

discrimination parameters. As in Case 2, data were simulated with two levels of test length (20,

40), three levels of sample size (500, 1000, 2000), three levels of interability correlation (0, .3,

.7), two levels of guessing (0, .2), and two choices of model (compensatory, noncompensatory).

The procedure for generating item responses and for DIMTEST runs remained the same as in

previous cases.

Simulation Case 4

In this case both the al and a2 values had a mean of 1.23 and a SD of 0.34. Interability

correlations and guessing were all set to zero. An additional level of correlation between the al and

a2 values ( raia2=0 ) was included to identify the effect of correlation of a vectors on the power of

DIMTEST. The purpose of this simulation case was to explore the power of DIMTEST in a

condition where multidimensionality might be most extreme, with no guessing and zero correlation

between dimensions, and with the two dimensions equally potent in terms of both magnitude and

variability of item discrimination parameters. Data were simulated with two levels of test length

(20, 40), three levels of sample size (500, 1000, 2000), two levels of correlation between a

1.I



Compensatory and Noncompensatory Multidimensionality 10

vectors (0, -0.29), and two choices of model (compensatory, noncompensatory). There were 24

combinations of factors, with each combination replicated 100 times. Again the procedure for item

response generation and DIMTEST runs remained the same as outlined in Case 1.

Results

The results are presented separately for each simulation case. Within each case, rejection

rates are tabulated separately for the two models. The rows and columns are arranged such that the

pattern of numbers is easily captured, thus facilitating the interpretations.

Simulation Case 1

The rejection rates over 100 trials for simulated datasets with varying degrees of test length

(N), sample size (S), and interability correlation (p) are presented in Table 1 and Table 2 for the

noncompensatory model and the compensatory model, respectively. The results are shown for the

three significance levels (.01, .05, and .010) with T or T' used. In these tables, each cell

(consisting of 3 rows and 6 columns) refers to three datasets with the same level of test length and

interability correlation. Within each cell comparisons are made possible for rejection rates across T

and T', across a levels, and across sample sizes. The corresponding rows of different cells allow

comparison of the effects of test length and interability correlation.

Noncompensatory Model

It can be seen in Table 1 that, as expected, the rejection rates for T' were always higher or

at least equal to those for T, and a more liberal a level resulted in higher rejection rates. For

datasets with high interability correlation (.7), the rejection rates were all very low. The highest

values at the a levels of .01, .05 and .10 were 2%, 4%, and 9%, respectively, using T, and 4% ,

7% , and 14%, respectively, using T'. Therefore, the datasets with high interability correlations

would all seem to be classified as essentially unidimensional in this case.

12
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Insert Table 1 about here

For datasets with low interability correlations (.3), the results were quite different. For

datasets with small (500) and moderate (1000) sample sizes, the rejection rates were all close to

nominal levels when T was used and a little higher than nominal levels when T' was used, but

even the large values generally did not differ much from the nominal levels. While for datasets with

large (2000) sample sizes, the rejection rates were considerably higher than the nominal levels.

This was especially true with N=50 and S=2000, where the rejection rates at the significance levels

of .01, .05, and .10 were 7%, 17%, and 28%, respectively, using T, and were 12%, 23%, and

33%, respectively, using T'. This would be indicative of some degree of departure from essential

unidimensionality. It was also observed that, in some cases, the rejection rates for sample sizes of

500 were higher than those for sample sizes of 1000, which might be due to sampling error.

DIMTEST is based on large sample theory; therefore, the results from small samples may be

unstable and inaccurate.

It can be concluded that DIMTEST detected some degree of multidimensionality for

datasets simulated from the noncompensatory model in Case 1 when the sample size was large and

interability correlation was low.

Compensatory Model

From Table 2, it is very clear that the rejections rates were all very low. Across all levels of

test length, sample size and interability correlation, the highest rejection rates at the significance

levels of .01, .05, .10 were 1%, 5%, and 7%, respectively, using T, and 3%, 8%, and 13%,

respectively, using T'. Obviously for all of the datasets simulated from the compensatory model in

this Case, the DIMTEST results would imply acceptance of the null hypothesis of essential

unidimensionality.

13
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Insert Table 2 about here

Simulation Case 2

For datasets simulated in this case, the rates of correctly rejecting the assumption of

essential unidimensionality are presented in.Table 3 and Table 4 for the noncompensatory model

and compensatory model, respectively.

Noncompensatory Model

Table 3 shows that DIMTEST rejected the hypothesis of essential unidimensionality for

datasets simulated from the noncompensatory model under various conditions, and the power was

dependent on test length, sample size, interability correlation, and the presence /absence of

guessing.

Insert Table 3 about here

The effect of guessing was clearly seen by contrasting the top portion with the bottom

portion of Table 3. In general the power decreased when guessing was present. However, under

the conditions where both the test length and the sample size were large (N=40, S=2000) and the

interability correlation was zero (p=0), the power was not greatly affected by guessing. The power

increased when test length and sample size increased, and decreased when interability correlation

increased, which was in agreement with the results from previous studies based on data simulated

from simple structure. For datasets with long tests (N=40) and moderate or large sample sizes

(S=1000 or 2000), DIMTEST maintained good power when interability correlation increased from

0 to .3. For all the datasets with test length of 40, sample size of 1000 or 2000, zero guessing, and

interability correlation of 0 or .3, the power was extremely high, ranging from 94% to 100% even

when a stringent a, level of .01 was used. Thus DIMTEST was very powerful for detecting

14
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multidimensionality for datasets simulated from the noncompensatory model when test length and

sample size were large, interability correlation was low, and no guessing was present.

It was also observed that for various combinations of the following factors, nonzero

guessing, short test length, small sample size, and high interability correlation, the rejection rates

of DIMTEST dropped to nominal levels. DIMTEST may lack power under these conditions.

Compensatory Model

As shown in Table 4, the rejection rates for the compensatory model were all very low.

Across all factors, the highest rejection rates at the a levels of .01, .05, and .10 were 1%, 4%, and

10%, respectively, using T, and were 4%, 10%, and 15%, respectively, using T'. It seems that

DIMTEST retained the hypothesis of essential unidimensionality for all the datasets generated from

the compensatory model in this case.

Insert Table 4 about here

Simulation Case 3

For datasets simulated in this case, the results for the noncompensatory model and the

compensatory model are shown in Table 5 and Table 6, respectively.

Noncompensatory Model

It can be seen from Table 5 that the patterns of effects of test length, sample size, guessing,

and interability correlation were similar to those observed in Table 3, but the power was generally

lower.

Insert Table 5 about here

With c=.2, the datasets were identified as unidimensional by DIMTEST except when

N=40 and p=0, where some degree of multidimensionality was detected. With c=0, DIMTEST

15
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identified some degree of multidimensionality for all the datasets with N=40 and p=0, and the

rejection rates were generally higher than the corresponding cases with c=.2. Multidimensionality

was also identified for some additional cases with N=20, p=0, and S=1000 or 2000, or with

N=40, p=.3, and S=1000 or 2000.

In general DIMTEST did not show great power for detecting noncompensatory

multidimensionality for data generated in this condition. Only in the case where both the test length

and sample size were large (N=40, S=2000), the interability correlation was zero (p=0), and no

guessing was present (c=0), was the power acceptable, with rejection rates at a levels of .01, .05,

and .10 being 58%, 74%, and 81%, respectively, using T, and 66%, 78%, and 82%, respectively,

using T'.

Compensatory Model

Rejection rates for datasets generated from the compensatory model are shown in Table 6.

The power was considerably higher than that for noncompensatory cases under the same

conditions. For example, for datasets with N=40, S=1000, and p=0, the rejection rates using T' at

the a levels of .01, .05, and .10 were 28%, 54%, and 63%, respectively, for the

noncompensatory model, and were 75%, 93%, and 95%, respectively, for the compensatory

model. Again the same pattern of effects of test length, sample size, interability correlation, and

guessing was observed as described before. When guessing was not present, DIMTEST

maintained good power for long tests (N=40) and large sample sizes (S=2000) when the

interability correlation increased from 0 to .3, which was also observed for the noncompensatory

data in Case 2.

Insert Table 6 about here

It can be seen that datasets with p=0.7 were uniformly classified as unidimensional, and

the same was true for datasets with nonzero guessing and interability correlation of p=.3. For

16
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datasets with long test lengths (N=40), large sample sizes (S=2000), zero guessing (c=0), and

zero to low interability correlations (p=0 or p=.3), DIMTEST demonstrated good power for

detecting compensatory multidimensionality.

Simulation Case 4

For data simulated in this case, the rejection rates are presented in Table 7 and Table 8 for

the noncompensatory model and the compensatory model, respectively.

Noncompensatory Model

From Table 7, it can be seen that the rejection rates for the noncompensatory model were

comparable to those observed in Case 2 (see Table 3) under the same conditions of test length,

sample size, interability correlation, and guessing, and were higher than those observed in Case 3

(see Table 5) under the same conditions. Also, the rejection rates were similar across the two levels

of raw. Thus the magnitudes of the discrimination parameters appear to dictate the degree of

multidimensionality for datasets simulated form the noncompensatory model, and the performance

of DIMTEST was not influenced by the correlation of the at and a2 values.

Insert Table 7 and Table 8 about here

Compensatory Model

As shown in Table 8, the rejection rates for compensatory model varied significantly across

the two levels of raia2, with the rejection rates being higher when raia2_0 than when rala2=-.29. This

suggests the impact of al and a2 correlation on the power of DIMTEST for detecting compensatory

multidimensionality. Contrasting the portion of Table 8 with rata =-.29 with the left bottom portion

of Table 6 reveals that, under these condition, the power was higher when meanai# meanai than

when meanal = meanal. Recall that for all the datasets with meanal # meanal and SDa1# SDa2, and

for all the datasets with meanal = meanai but SDai# SDa2, DIMTEST appeared to have limited

17



Compensatory and Noncompensatory Multidimensionality 16

power for detecting compensatory multidimensionality. This result imples that there is an

interaction effect for power between the magnitude and the variability of item discrimination

parameters.

Discussion

This study provided preliminary results for the performance of DIMTEST for detecting

multidimensionality with data simulated from both compensatory and noncompensatory models

under a latent structure that all items in a test were influenced by the same two abilities. The

datasets simulated in case 1 were intended to reflect real test data in terms of descriptive statistics

and classical item characteristics. The Way et. al study (1988) found that for data simulated as in

Case 1, the unidimensional IRT procedures yielded biased estimates of item and ability parameters.

Therefore it was of interest to know what DIMTEST would conclude about essential

dimensionality for data simulated this way. As the results showed, DIMTEST did identify some

degree of departure from essential unidimensionality for datasets simulated from the

noncompensatory model when sample size was large and interability correlation was low, although

the rejection rates were not very high. On the other hand, for all of the data simulated from the

compensatory model, DIMTEST results suggested acceptance of the hypothesis of essential

unidimensionality. In general, datasets simulated in this case can be characterized as having one

dominant dimension and one minor dimension; therefore, it is not suprising thatrejection rates

were low in most cases.

In Case 2 through Case 4, data were simulated under various conditions where the relative

influence of the second dimension was greater than in Case 1. It should be noted that data

simulated in these cases may not be very realistic, and the score distributions resulting from the

two models may not be comparable. From a theoretical perspective, however, these cases did

allow an assessment and comparison of the performance of DIMTEST for datasets with different

distributional characteristics of item discrimination parameters. The results suggested that, for the

noncompensatory model, both the magnitude and the variability of a2 values were related to

18
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multidimensionality, with the effect of magnitude dominating over variability for determining

multidimensionality. While for the compensatory model, only the variability of the a2 values

seemed to reflect the degree of multidimensionality, and the likelihood of rejecting the hypothesis

of essential unidimensionality depended on the interrelation between the al and a2 values. This

finding has some implication for the use of 13 , proposed by Nandakumar (1991) as a rough index

of departure from essential unidimensionality. Since this index was developed for the case of

uncorrelated al and a2 values, it may not be applicable to datasets with nonzero correlation between

the al and a2 values.

In previous studies, DIMTEST had been found to work sufficiently well with data

simulated from simple structure type of specification and modeled by compensatory abilities.

Given that DIMTEST uses a factor analytic procedure to select AT1 items, intuitively it should

work well with this type of latent structure. However, the findings from this study suggest that,

for datasets that contained items which were all influenced simultaneously by multiple abilities, the

noncompensatory model seemed to be the better approach for modeling the truly non-

unidimensional item responses. On the other hand, it might be argued that, the DIMTEST

procedure lacks power rather than the compensatory model yields more unidimensional-like data.

To address this issue, a comparative study would be necessary so that the number of dimensions

for this type of data could be tested using other approaches for assessing unidimensionality.

With respect to the effects of test length, sample size, interability correlation, and guessing,

findings across the two models were consistent to those for datasets simulated based on simple

structure. Generally speaking, in the situations where DIMTEST identified multidimensionality,

the power increased when test length and sample size increased, and when interability correlation

decreased. In addition, the power decreased when guessing was present, except when both test

length and sample size were large (N=40, S=2000). For datasets with various combinations of

short test length (N=20), small sample size (S=500), high correlation between dimensions (p=.7),

and nonzero guessing (c=.2), DIMTEST appeared to have less power.

19
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This study should foster further research on DIMTEST and other methods for assessing

unidimensionality using data simulated from an alternative model and a nonsimple structure type of

specification. Although intended to be comprehensive in terms of factors involved, a question

remained unanswered, which is, are there monotonic relationships between the power of

DIMTEST and the degree of relative magnitude and/or variability for the two discrimination

vectors? Future simulation studies with more systematic variations on these factors are needed to

address this question.
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